Re-filtering and Exactness of the Gelfand–kirillov Dimension
نویسندگان
چکیده
– We prove that any multi-filtered algebra with semi-commutative associated graded algebra can be endowed with a locally finite filtration keeping up the semi-commutativity of the associated graded algebra. As consequences, we obtain that Gelfand–Kirillov dimension is exact for finitely generated modules and that the algebra is finitely partitive. Our methods apply to algebras of current interest like the quantized enveloping algebras, iterated differential operators algebras, quantum matrices or quantum Weyl algebras. 2001 Éditions scientifiques et médicales Elsevier SAS
منابع مشابه
Centralizers in Domains of Gelfandkirillov Dimension 2
Given an affine domain of Gelfand–Kirillov dimension 2 over an algebraically closed field, it is shown that the centralizer of any non-scalar element of this domain is a commutative domain of Gelfand–Kirillov dimension 1 whenever the domain is not polynomial identity. It is shown that the maximal subfields of the quotient division ring of a finitely graded Goldie algebra of Gelfand– Kirillov di...
متن کاملThe Gelfand-kirillov Dimension of Quadratic Algebras Satisfying the Cyclic Condition
We consider algebras over a field K presented by generators x1, . . . , xn and subject to (n 2 ) square-free relations of the form xixj = xkxl with every monomial xixj , i = j, appearing in one of the relations. It is shown that for n > 1 the Gelfand-Kirillov dimension of such an algebra is at least two if the algebra satisfies the so-called cyclic condition. It is known that this dimension is ...
متن کاملLeavitt Path Algebras of Finite Gelfand–kirillov Dimension
Groebner–Shirshov Basis and Gelfand–Kirillov dimension of the Leavitt path algebra are derived.
متن کاملLie Algebras with Finite Gelfand-kirillov Dimension
We prove that every finitely generated Lie algebra containing a nilpotent ideal of class c and finite codimension n has Gelfand-Kirillov dimension at most cn. In particular, finitely generated virtually nilpotent Lie algebras have polynomial growth.
متن کاملCentralizers in Domains of Finite Gelfand-kirillov Dimension
We study centralizers of elements in domains. We generalize a result of the author and Small [4], showing that if A is a finitely generated noetherian domain and a ∈ A is not algebraic over the extended centre of A then the centralizer of a has Gelfand-Kirillov dimension at most one less than the Gelfand-Kirillov dimension of A. In the case that A is a finitely generated noetherian domain of GK...
متن کامل